プレスリリース・研究成果

NECと東北大学「開発者が解釈可能なマテリアルズ ・インフォマティクス」で特性向上の主要因を抽出する手法を開発

2019/10/31

概要

 日本電気株式会社(以下NEC)と国立大学法人 東北大学(以下 東北大学)は、メリーランド大学と共同で、これまでの研究成果である実験データ生成の省力化技術と、材料特性に対する高精度での予測とその解釈性を与える技術に加え、今回新たに材料の特性向上に関わる無数の要因から主要因を効率良く抽出する手法を開発しました。さらに、この手法を用いてスピン熱電材料(注3)の熱電性能向上の実証に成功しました。

 これまで、3者はロボティクス技術による自動実験の仕組みと、解釈可能な機械学習(Explainable AI)を組み合わせた「開発者が解釈可能なマテリアルズ・インフォマティクス」を開発してきました。しかし、自動実験で得られたデータが本来持つ不完全性を機械学習側で考慮するしくみがなかったため、材料開発の効率を上げられない、という課題がありました。

 今回の手法を適用したシステムを用いることで、物理・化学等の専門的な知見を持った開発者がAIの予測結果の背後にある支配的な物理現象や因果関係を紐解くヒントを得られます。これにより、材料開発/物性解析における新たな分野へマテリアルズ・インフォマティクスが適用でき、新材料の発見へとつながる可能性が高まります。

 今後3者は、これらのマテリアルズ・インフォマティクス技術を通じて材料・素材開発メーカ等との連携を進め、今までになかった高機能・高特性な材料・素材の開発事業への貢献を目指します。

 なお本研究成果は、2019年10月30日(木)に英国の科学雑誌「Nature Partner Journal Computational Materials」にオンライン掲載されました。

詳細

 

Three requirements of machine learning in materials developments. Good collaboration between machine learning tools and scientists in materials developments requires sparse modeling, prediction accuracy, and interpretability. One type of interpretable machine learning called factorized asymptotic Bayesian inference hierarchical mixture of experts (FAB/HMEs) satisfies all three criteria (From Identification of advanced spin-driven thermoelectric materials via interpretable machine learning)