欠陥反応制御による太陽電池用シリコン結晶の高機能化をめざして

結晶欠陥物性学部門、材料照射工学部門*、量子エネルギー材料科学国際研究センター**、

結晶物理学研究部門***

大野裕、清水康雄*、外山健**、宇佐美徳隆***

概要

実用太陽電池材料に応用されるシリコン(Si)結晶は、結晶粒界、転位、金属不純物(点欠陥)などの 多数の格子欠陥を内包し、それらの原子構造・電子状態や空間分布に依存する欠陥準位を介した電子 遷移や欠陥自身の構造的キャリア散乱などにより変換効率が変化する。本研究では、変換効率に影響 する欠陥を抑制するプロセスの物理的な指針を探求することを目的に、電気特性に影響する拡張欠陥・ 点欠陥複合体のうち、1)積層欠陥あるいはΣ3粒界とドーパント原子の複合体および2)ドーパント原子 を高濃度に添加した結晶中の銅(Cu)析出物に対し、原子配列(透過電子顕微鏡法)と組成分布(3次元 アトムプローブ法)を精密解析し、第一原理計算の結果と比較して、その形成機構を定量評価した。1)に 対して、リーク電流経路の形成や動作電流の不均一化などに繋がるn型ドーパント原子の積層欠陥・Σ3 粒界への偏析を観測し、第一原理計算との比較などから粒界とドーパントの引力相互作用エネルギーを +0.15eV と見積もった。一方、p型ドーパント原子の偏析は観測されなかったが、これは相互作用が弱い か負であるためと説明できた。2)に対して、高濃度に p 型ドーパント原子と酸素(O)を含む Si 結晶中で、 これまで報告のない、電気的に不活性な BCC 構造の Cu シリサイドの析出を見出した。この析出物は O 原子を形成核として格子位置のp型ドーパントを置換しながら析出すると考えられ、電気特性に影響する Si 中の Cu 原子の除去への応用が期待できる。

はじめに

優れた生産性と変換効率により発電コストを抑えられる観点から、多結晶Siを用いた太陽電池が現在 の実用太陽電池の主流となっている。多結晶Siは欠陥密度が高いため少数キャリア寿命が短いなどの 欠点を有する。具体的には、粒界に加えて、成長中の結晶粒衝突時に生じる応力により粒界から転位が、 融液とるつぼなどの反応によりC、N、Oなどの軽元素不純物が導入される。またコスト的問題から、実用 太陽電池用のSiおよびドーパント原料は電気特性を悪化させるCuなどの遷移金属不純物を微量含む。 さらに、結晶育成やデバイス作成のプロセス中、欠陥は互いに相互作用し複合欠陥を形成する。物理的 には、欠陥準位を介した電子遷移や欠陥自身のキャリア散乱が変換効率への影響の起源であり、それら は欠陥の原子・電子構造と空間分布に依存する。

これまで、変換効率に影響を与える欠陥の構造や空間分布が評価され[1, 2]、結晶育成条件の最適化 による電気的活性粒界の抑制[3, 4]に加えて、デバイス作成プロセスに組込める単純な処理による欠陥 の不活性化が提案された。たとえば熱処理による金属析出物のサイズ制御[5]やn型のドーパントである P原子の拡散による金属不純物ゲッタリング[6]など、熱的な拡散を介した点欠陥・拡張欠陥反応の応用 による変換効率の向上が提案されている。しかし多結晶Si中での欠陥反応と欠陥機能に関する物理は 理解がまだ不十分である。本研究では、単純かつ低コストのプロセスでの欠陥反応・機能制御を目指し、 欠陥工学的観点からその物理を理解することを目的とした。

実験方法の概略

本研究では、欠陥反応制御によるSi機能制御の観点から研究代表らが研究してきた、Si中での積層 欠陥・Σ3粒界と点欠陥の相互作用[7,8]および電気的に不活性なCu析出物の形成機構を研究対象と する。欠陥反応と機能の理解には、個々の欠陥の形状・構造・組成および形成過程の評価に加え、機能 の直接評価が必要である。そのため、任意構造の拡張欠陥が導入されたSi結晶を準備し、熱処理により 点欠陥と相互作用させる。FIB加工によって孤立した拡張欠陥を含むナノニードルを作成し、同一欠陥に 対し、原子構造と電気・電子的特性を透過電子顕微鏡法で、組成分布を3次元アトムプローブ法で精密 解析する。理論的な考察を加えて、拡張欠陥と点欠陥の相互作用を定量的に評価する(図1)。さらに、 拡張欠陥と点欠陥の混在する実用材料中での欠陥反応を定量的に評価する。得られた結果より電気的 に活性な欠陥やキャリアを散乱する欠陥を抑制・不活性するための物理的指針を探求する。

成果 1: 積層欠陥・Σ3粒界とドーパント原子の相互作用 [a, b]

Si 結晶中の粒界は、不純物の固着源として働く、局在電子状態を形成するなどの理由で物性に影響 する。しかし粒界と不純物の相互作用は完全には理解されていない。本研究では、太陽電池用Si多結晶 で結晶粒界の大部分を占める積層欠陥あるいは 23粒界を対象とし、それらを種々のドーパント原子を 添加したSi結晶中に意図的に導入して構造・組成を定量評価することでドーパント原子との相互作用を 調べた。

n 型ドーパントの P、As、Sb あるいは p 型ドーパントの B、Ga を含む Si 単結晶をチョクラルスキー(CZ) 法で育成し、温度 900℃で塑性変形して拡張転位(一対の部分転位に囲まれた帯状の積層欠陥。界面 構造は Σ 3<110>/(111)粒界と類似)を導入した。また、Σ 3<110>/(111)粒界とドーパント原子を内包する Si 単結晶もCZ法で育成した。それぞれのドーパント原子は 10¹⁸ cm⁻³ 以上の高濃度に添加した。それらを 温度 900℃で 100 時間まで熱処理し、ドーパント原子と積層欠陥あるいは Σ 3粒界を相互作用させた。

n型ドーパント添加試料において、拡張転位の拡張幅から見積もった見かけ上の積層欠陥エネルギー γ (注1)は転位線の単位長さに集積しうるドーパント原子数 Nの関数として単調減少した(図2)。異なる イオン半径のドーパント原子で同じ依存性を示すことから、ひずみの効果ではない。また、ドーパント濃度 が高くデバイ遮蔽長が長いため、部分転位間に働くクーロンカの効果でもない。これらの結果より、積層 欠陥への n型ドーパントの集積により積層欠陥エネルギーが減少した(鈴木効果)と説明できた。実際、 第一原理計算は積層欠陥とn型ドーパントとの電子的な引力相互作用を示し(図3)、アトムプローブ法に よる3次元組成分布解析は積層欠陥面と同じ原子配列の Σ 3粒界へのP原子の偏析を示唆した(図4)。 ドーパント原子が積層欠陥近傍で熱平衡分布すると仮定した反応モデルから、相互作用エネルギーは 0.15±0.05eV と見積もられた。これらの結果より、n型 Si 多結晶ではリーク電流経路の形成や動作電流 の不均一化などに繋がるドーパント原子の Σ 3粒界への偏析が起こりえることが示された。

ー方、p型ドーパント添加試料においてγはMに依存せず(図 2)、アトムプローブ法でB原子の偏析は 確認できなかった。また、第一原理計算より p型ドーパントと積層欠陥は斥力相互作用か弱い引力相互 作用が働くと示された(図 4)。これらの結果、p型 Si 多結晶ではドーパント原子はΣ3粒界に偏析せず、 粒界偏析という観点からは p型 Si 多結晶ではドーパント原子の影響は無視できることが示された。

(注 1) 拡張幅は部分転位近傍のひずみに起因する弾性エネルギーと積層欠陥エネルギーのバランス で変化する。弾性エネルギーあるいは積層欠陥エネルギーが減少すれば拡張幅が増加する。不純物の 偏析などによるひずみ緩和が無い仮定の下で、拡張幅Δ_{obs}、部分転位のバーガースベクトル b、転位線 とバーガースベクトルのなす角(方位角)θより、弾性論的に積層欠陥エネルギーγが見積もられる[9]。

図2 Pドープ CZ-Si (P 濃度 3x10¹⁸ cm⁻³、熱処理時間 0.5h)における(a) 拡張幅 Δ_{obs} と転位の方位角 θ の 関係。実線:弾性論で予期されるある積層欠陥エネルギー γ での Δ_{obs} - θ 曲線。(b) (a)のデータを用いて 見積もった γ_{obs} (c) 種々のドーパントに対する、 γ と積層欠陥に集積しうるドーパント原子数 Nの関係。

図3 アトムプローブ法によるΣ3 粒界(右上図の点線)近傍の組成分布解析。界面を挟んで結晶方位が 変わり、それに伴いSiの電界放射像の晶帯軸パターンが変化する(左図 1-12)。右上図中心部(青色)の 濃度を調べると、粒界(一点鎖線で挟んだ領域)で周囲に比べ P 濃度は増加、B濃度は不変(右下図)。

図4 (a) 積層欠陥(黄色)を含むSi結晶構造モデル。(b, c) 第一原理計算で求めた、(a)の全エネルギー とある site をドーパント原子で置き換えた構造モデルの全エネルギーの差ΔE; (b) P および(c) B 原子。 積層欠陥面にP原子が存在すると全エネルギーが減少するため、P原子は偏析し積層欠陥エネルギーは 減少する。一方、B原子が存在すると全エネルギーが増加するため偏析は生じない。

成果 2: 電気的に不活性な Cu₃Si 析出物の形成

Si 中の Cu 原子は、孤立状態では電気特性に影響する深い局在準位を形成する。また、熱処理などにより転位を付随する Cu シリサイド析出物を形成することがあり、それらも電気特性に影響する。従って、 Cu 関連欠陥の形成過程の理解はデバイス応用に重要である。本研究では、高濃度にドーパント原子を 含む Si 結晶中における Cu 析出物の形成過程を調べ、その形成機構を議論した。

高濃度に p 型ドーパントとOを含む Si 結晶中に、これまで報告のない、厚み約 10nm、幅数 100 μ m の 板状欠陥が、ほぼ{112}面に沿って形成された。この欠陥はサイズが数 10nm までの BCC 型 Cu₃Si 結晶粒 (格子定数 2.85Å)の集合体で、粒と Si の界面は Σ 3 対応粒界と類似であった(図5)。既知の熱平衡 Cu 析出物と異なり、界面近傍にひずみや転位は存在せず、また、この BCC-Cu₃Si 結晶を内包する結晶の 電気伝導特性(キャリア密度および移動度)は内包しない結晶の特性と一致した。これより、Si 中の BCC-Cu₃Si 結晶は電気的に不活性と考えられる。Si 結晶中の Cu は格子サイト1つと格子間 T サイト3つ を占めて Cu₄ クラスターを作ると理論予測されており、これが4つ集合して BCC-Cu₃Si 結晶が形成される と考えられる。この構造は Si 結晶と格子ミスマッチが小さい(約5%)準安定構造と第一原理計算で示した。この析出物はO原子濃度が低いと形成されにくいため、形成核はO原子と関係すると考えられる。実際、 析出物の近傍でO原子の偏析が確認された(図6,7)。また、析出物中のドーパント原子濃度は母相の Si 中より約 2 桁小さかった(図7)。これより、析出前に格子位置に存在したドーパント原子が、析出過程 で優先的に Cu 原子と置換されたと思われる。これらの形成過程を応用すれば、電気特性に影響する Si 中の Cu の除去が期待できる。

図5 濃度 10²⁰ cm⁻³の B ドーパント原子と 10¹⁸ cm⁻³のO原子を含む CZ-Si 結晶に形成された Cu 析出物の結晶構造解析。左下図は析出物の{110}面間隔と Si の{220}面間隔の差(5%)に起因するモアレ図形。 右下図は析出物の 110 反射による暗視野像。析出物がナノサイズの結晶粒の集合体だと分かる。

図6 走査型透過電子顕微鏡(STEM)を用いた析出物 の高角度散乱暗視野(HAADF)像(重い元素ほど明るく 見える、左図)およびエネルギー分散X線分光法(EDS) による析出物近傍の酸素濃度マップ(右図)。

図7 アトムプローブ法による BCC 型 Cu₃Si 結晶粒集合体の 3 次元組成分布。

まとめと展望

透過電子顕微鏡法とアトムプローブ法の併用によりSi中での積層欠陥・Σ3 粒界と点欠陥の相互作用 および電気的に不活性な Cu 析出物の形成機構が解明できた。しかし、個々の拡張欠陥を選択的に加工 する手法が十分に確立できず、当初の目的である欠陥自身の物性をその場評価することはできなかった。 研究を進めて電気的に活性な欠陥やキャリアを散乱する欠陥を抑制・不活性するための物理的指針を 探求し、単純かつ低コストのプロセスでの欠陥反応・機能制御につなげたい。

謝辞

第一原理計算で関西学院大学理工学部の戸賀瀬健介、谷口僚、正木佳宏、西谷滋人、STEM-EDS で大阪大学産業科学研究所の吉田秀人、竹田精治、STEM-EELS でUBE科学分析センターの正田薫、 アトムプローブで材料照射工学部門の高見澤悠、海老澤直樹、永井康介、結晶成長・欠陥導入で結晶 欠陥物性学部門の大澤隆亨、井上海平、徳本有紀、沓掛健太朗、米永一郎各氏にご協力いただいた。

参考文献

- [1] W. Kwapil, et al., Appl. Phys. Lett. 95 (2009) 232109.
- [2] B. Lim, et al., Appl. Phys. Lett. 95 (2009) 232113.
- [3] K. Kutsukake, et al., J. Appl. Phys. 101 (2007) 063509.
- [4] K. Fujiwara, et al., Acta Mater.54 (2006) 3191.
- [5] T. Buonassisi, et al., Nature Mater. **4** (2005) 676
- [6] D. Macdonald, et al., Proc. 29th IEEE Photovoltaics Specialist Conf. (2002) pp.285.
- [7] Y. Ohno, et al., Appl. Phys. Lett. 95 (2009) 091915.
- [8] Y. Ohno et al., J. Appl. Phys. 108 (2010) 073514.
- [9] D. J. H. Cockayne, et al., Philos. Mag. 20 (1969) 1265.

発表論文

[a] Interaction of dopant atoms with stacking faults in silicon

Y. Ohno, Y. Tokumoto, H. Taneichi, I. Yonenaga, K. Togase, S.R. Nishitani, Physica B **407** (2012) 3006-3006.

[b] Doping effects on the stability of stacking faults in silicon crystals

Y. Ohno, Y. Tokumoto, I. Yonenaga, Thin Solid Films 520 (2012) 3296-3299.

Towards the control of defect states in Si crystals for functional solar cells

 Physics of Crystal Defects, Irradiation Research on Nuclear Materials^{*}, International Research Center for Nuclear Materials Science^{**}, Crystal Physics^{***}
Y. Ohno, Y. Shimizu^{*}, T. Toyama^{**}, T. Usami^{***}

Extended defects such as grain boundaries and stacking faults are a key issue for high performance photovoltaic and/or electronic devices fabricated with Si crystals, since they would modify the electronic properties. In order to control the defect states for the fabrication of functional devices, the structural properties of the defects, as well as their optoelectronic properties such as the possible presence of defect levels, should be understood with a high spatial resolution simultaneously with a high spectral resolution. In the present work, we have determined 1) the interaction of dopant atoms with stacking faults and 2) the formation of electrically-inactive Cu precipitates, by means of transmission electron microscopy, atom probe, and ab-initio calculations.

1) The width of a stacking fault ribbon bound by a pair of partial dislocations increased when n-type dopant atoms (P, As, or Sb) segregated nearby the ribbon. The increase was explained as the reduction of the stacking fault energy due to an electronic interaction between the ribbon and the dopant atoms segregated at the ribbon. The interaction energy was estimated to be 0.15 ± 0.05 eV, and the interaction would modify the electronic properties. On the other hand, p-type dopant atoms (B or Ga) would not interact with stacking faults.

2) Planar {112} agglomerates of Cu₃Si nano-crystals with a BCC structure (a=0.285 nm), which is not the thermal equilibrium η -Cu₃Si structure, were formed in Si heavily doped with oxygen atoms and p-type dopant atoms (B or Ga), irrespective of dislocations. Unlike isolated Cu atoms and the thermal equilibrium η -Cu₃Si precipitates, the BCC-Cu₃Si precipitates would not affect the electrical properties.