International Research Center for Nuclear Materials Science
Institute for Materials Research (IMR)
Tohoku University
量子エネルギー材料科学国際研究センター

東北大学金属材料研究所附属量子エネルギー材料科学国際研究センター（以下では当センターと呼ぶ）は、平成16年4月1日にその前身である材料開発利用機構（略称4D44年設）を名称変更等で発足したものです。当センターでは以下のような目指し続けてきた全材料利用の重要性を引き続き、材料の構造、原子的な研究の推進に重点を置きつつ、国際化をはじめとして新たな展開を図っていくことになっています。

原子力は地球の拡散で30%以上を占める主なエネルギー源であり、国内で発電し
ている原子力の数も50基を超えています。これらの原子力の安全性に、かつ人々が安心感を
持てるように発電していくためには、原子力材料の寿命確認等の安全に関する研究が不可欠です。当センターでは東北大学金属材料研究所の持つ最先端の材料科学の手法を雇
用してこのような研究を行っています。また、将来の核戦争等のエネルギー源のた
めの材料に関する研究も重要な研究対象です。さらに、原子力を使用する際に発生する
利用化と核融合の安全性に関する研究、アクチノイド元素や超伝導等を積極的に
利用した新物質の開発、およびこれらの基礎となる物理性研究は、材料研究に並ぶ当
センターの研究の柱です。当センターではこのような研究を自ら行い、同時に、全国の大
学や研究機関を対象に、全国共同利用機関として共同利用を支援するとともに、
積極的な共同研究を推進しています。

人材の育成は原子力の将来にとって最も重要な課題です。当センターはこれまでで大学院生の学位取得のための研究や短期集中学生実習を通じて人材育成に大きな役割を果た
がってきたが、今後も指導者制度の充実を通じて教育・研究推進を推進していく計画です。

高レベル研究発表を維持し、情報化研究技術を共有することにより研究の効率化を図る上
でも国際化が重要とされています。当センターは世界の代表的な研究機関と研究提携を結ぶな
どして、人材の交流、合わせ等の交流、情親を図っていくことになっています。原子力研究の
上で研究協力は特に重要ですが、現在利用している日本原子力研究機関の材料科学部
や核研究の開発機関の開発機関の常葉大学、今後さらに地方の原子力等を利用した原子力
開発を進めていくことをしています。共同研究の推進にあたる当センターと関係機関との協力体制を
模様に示しています。

大学等が研究する材料科学研究に関する国際協力の国内拡大としての役割もセンターの重
要な課題です。日本原子力研究機関・核融合分野での事業であるJUPITER-II計画においても、
当センターは重要な役割を担ってきましたが、今後はさらに広範囲の国際協力等において主
体的な役割をはっきりととしていく計画です。

これらの活動を通じて、日本の核エネルギー発電設備との緊密な
連携・協力を必要とせます。国際会議等を整備しつつ有効な協力関係をさらに強化し、連携を
図ることが重要です。また、産学官の連携事業の推進や地域との協力により、研究の社会進展
を図っていくことにしています。
センターにおける照射後試料の流れ

JMTRやJOYO、および海外の原子炉で放射されためられた試料は、キャパセルに収容された状態で大型輸送容器に入れられ、
専用ラジオで当センター内ホットラボ里（H棟）に配布される（写真①）。大型輸送容器はクレーンで落とされ（写真②）、
許可された内部に収容されたキャパセルは放射線機器を通過する。放射線検査を行い、放射線量検査が行われる（写真③）。
キャパセルは、放射線影響の模様を確認してから、最終的に無害化される。その後、試料は、研究用（K棟）（写真④）
または、アクトンサイト元素研究（A棟）（写真⑤）に移され、また一部は大学に供された。放射線治療が行われる（写真⑥）。

原子炉照射試験

国や内外の原子炉を用いて中性子照射試験を行う。中性子照射に用いる試料は、限定された照射スペースを最大限に
活用するために、また照射時の温度・中性子束の割合を低減するために、標準サイズの缶法よりも着しく小さいことが
要求される。これらの試料（微小試験片）は照射用のキャパセルの中に収容されるが、キャパセルは共有利用者の
希望する照射条件を満たすように設計される。写真：機械的特性評価のために使用される照射用試料、およびJMTR規制
で使用されているキャパセルのインナーライトと試料（一部）を示す。
ホットラボラトリー棟（H棟）

照射済みキャプセルからの放射性試料の取り出しと区分け、その後の保管とともに、放射線レベルの高い試料については、表面研磨（湿式、乾式）、微細加工（放電加工）、真空焼結、種々の機械の性質の測定（シャルビー衝撃試験、引張試験、曲げ試験、疲労試験、応力腐食割れ試験、クリープ試験、ピッカース微小硬度試験、ナノインデンテーション）、および走査型電子顕微鏡による元素分析・破壊の観察を行う。

計装化シャルピー衝撃試験

開発された多様な耐照射性光ファイバーを通過した白色光（原子炉照射下での測定例）

ナノインデンテーター

放射線による放射性ガス濃縮度を測定した例。全ての光ファイバーは放射線から光を通している。一部のものは選択吸収により白色光が偏色する。

走査型電子顕微鏡（SEM）

2次電子像および反射散乱電子像観察のほかに、特性X線元素分析（EDS）も可能である。

微小試験片用疲労試験機

微小試験片用疲労試験機は、荷重、変位速度およging速度による制御が可能で、任意の速度演算を可能にする。末装置ではレーザー判定計による非接触のひずみ計測方法を採用し、試験片形状の大きさを示すことができる。末装置は、JLF-130の疲労特性に及ぼす中性子照射の影響を示す。

放射線用パルプ計（SEM）

パルプを加熱して微小変位領域で押し込むことにより表面近傍の硬さを計測する。下図はHe照射シミュレーション（2×10^7/cm²、RT）を示す。また、内部変位領域である。数MeVのインピナル照射による微小変位領域は試料表面近傍に視われるためインピナル照射後の材料の機能的な性質を微小変位領域で評価する必要がある。また、中性子照射材についても析出物や結晶格子近傍での硬さを高精度に計測することが可能である。

放射線用パルプ計（SEM）

じんせい放射線防止用ループをつけるためのループボックス（射線方向）を用いて、試料中央の水平面にセットした原子炉照射済みの材料（鋼、クラフト、炭化物等）を各種照射後試験のために高精度に加工する。

放射線用パルプ計（SEM）

測定データの解析や議論の場として、また研究者相互のコミュニケーションや休憩の場として自由に使用されている。A棟にも同様な控え室がある。
研究棟（K棟）・セラミックス棟（C棟）

H棟で分けられた放射能の比較的低い試料について、照射により導入されるとした微細な欠陥の観察と元素分析を行う。これにより、透過型電子顕微鏡、陽電子消滅同時計数デプスプローブ・広がりおよび陽電子寿命測定装置、低速陽電子ビーム発生装置、3次元アトムプローブ測定装置、電子スピン共鳴測定装置等、また試料作製のための電子顕微鏡装置や集束イオンビーム装置等が設置されている。また、隣接するセラミックス棟には、陽電子消滅2次元総相関測定装置、照射試料ID膜厚印字ツールマーク装置、試料作製用切断機（ダイヤモンドウォーカー）、高速自動研磨機、耐放射性に優れた金属材料を開発・評価するための種々の装置がある。

図1 透過型電子顕微鏡（TEM）

陽電子消滅同時計数デプスプローブ・広がりおよび
陽電子寿命測定装置

図2 低速陽電子ビーム発生装置

電子スピン共鳴（ESR）測定装置

電子スピン共鳴（ESR）測定装置

図3 3次元アトムプローブ（3DAP）測定装置

図4 集束イオンビーム（FIB）装置

図5 集束イオンビームを走査しながら照射することにより材料の
内部構造研を、反射したTEM画像、3D-APFIM画像（左
下写真）等の解析が可能である。また、ガラスイオンビームによる
材料表面の削除は、同程度に熱伝導している低エネルギーイオン
ノース腐食のジュニアル・ミル（右下写真）で除去できる。

図6・図7 集束イオンビームによる破壊解析の例（SEM写真）
アクチノイド元素実験棟（A棟）

原発力発電に使用された燃料の中には長寿命のアクチノイド元素が含まれているが、その大部分は20世紀になって人類が観察した元素である。アクチノイド元素は、原子能・核燃料・多種類核変換器など物理的・化学的・化学的・化学的で他の元素には見られない特徴を持つことが知られつつある。生成して間もない元素の研究開発は、人間の知的緊張を振り返び、新たな研究開発をもたらすことのできるものである。もともとアクチノイド元素を取り扱う唯一の共同利用センターであり、安全性を十分に配慮しながら、新しい材料研究の基礎をとえるアクチノイド研究が推進されている。さらに、放射性廃棄物の削減強化用の新型燃料（アクチノイド水素化物）の研究開発も行っている。

エネルギー効率の高いアクチノイド電池の提案と開発

水素化物燃料・材料の開発

放射性廃棄物の処理への挑戦（Th-229mの崩壊特性）

放射性廃棄物の処理への挑戦（Th-229mの崩壊特性）
交通案内

[自動車]
北関東自動車道 水戸大洗ICから 15分
常磐自動車道 水戸ICから 50分
東関東自動車道 潮来ICから 80分

[JR常磐線]
水戸駅で 鹿島臨海鉄道 乗り換え、
大洗駅下車 タクシー10分
（宿泊所へは タクシー5分、徒歩15分）

[バス]
水戸駅から「大貫・鋲田行き」
大洗原研入口下車 徒歩20分
（宿泊所へは 海岸病院入口下車 徒歩3分）

[成田空港・羽田空港から高速バス]
水戸大洗インター下車 タクシー15分
（空港 ➔ 水戸大洗インター 約2時間）

東北大学金属材料研究所
附属量子エネルギー材料科学国際研究センター
〒980-8577
仙台市青葉区片平2-1-1
TEL 022-215-2181 （総務課）
FAX 022-215-2184
http://www.imr.tohoku.ac.jp

東北大学金属材料研究所
附属量子エネルギー材料科学国際研究センター
〒311-1313
茨城県東茨城郡大洗町成田町
TEL 029-267-3181
FAX 029-267-4947
http://www.oaral.imr.tohoku.ac.jp